Bridging Dimensions: Confident Reachability for High-Dimensional Controllers

PROBLEM

Autonomous systems, like self-driving cars and unmanned aircraft, rely on high-dimensional (e.g., vision-based) controllers (HDC) to perform complex and critical tasks.

• However, the HDC-controlled systems lack formal safety guarantees on their behavior.

Goal: Perform reachability analysis on systems with HDCs, i.e., construct an overapproximated set of states that the system can reach from the initial set within a given time horizon. This reachable set can be intersected with goal/unsafe sets to provide a safety guarantee.

APPROACH

1. **Distill HDC knowledge:** Mimic the behavior of an HDC with multiple low-dimensional (state-based) controllers (*LDCs*). The training process of an LDC:

2. Estimate HDC-LDC discrepancies: Compute differences between HDC- and LDC-controlled systems. We introduce statistical upper bounds of two types: *trajectory-based* and *action-based*. Both are estimated with *conformal prediction* from labeled paired trajectories of LDC and HDC.

3. Inflate LDC reachable sets: We obtain an HDC reachable set by computing an LDC reachset using the POLAR toolbox and inflating it with either discrepancy from Step 2.

Major contributions:

Examples of verification: *true positive* and *false negative* ground truth and verification \rightarrow safe ground truth \rightarrow safe, verification \rightarrow unsafe

This research was supported by the Air Force Research Laboratory, Information Directorate, through the Visiting Faculty Research Program, Contract Number FA8750-20-3-1003. Approved for Public Release, Distribution Unlimited, AFRL-2024-5737

1. Reduce high-dimensional verification to the reachability analysis of multiple (4–10) approximating low-dimensional controllers. 2. Inflate reachable sets with statistical bounds on discrepancies (≈5%) between trajectories/actions using *conformal prediction*. \circ F1 score increased by 5–20 p.p. compared to a purely data-driven approach.

> Successful verificaiton plot Action-inflated reachable sets — Simulated trajectory --- Goal set: theta ≤ 0.35 0.6 0.8 0.4 1.0 1.2 1.4 time

INFORMATION INSTITUTE MISSION: Strengthen and expand information technology research, develop collaborative relationships, and increase research emphasis in areas of information technologies for the Information Directorate.

RESULTS: 3 CASE STUDIES

Trajectory-based and action-based discrepancy bounds can differ significantly:

With a confidence level of 0.05, both approaches achieved a minimum precision of 0.95 and significant true positive rates. The trajectory-based multi-LDCs approach with showed best performance.

Table 1: Y	Verification perfor	mance $(M =$	= 4 for IP an	d CP, $M = 1$	10 for MC)
Bonchmork	Metrics	Trajectory-based approach		Action-based approach	
Dentimark		1 LDC	M LDCs	1 LDC	M LDCs
Inverted Pendulum (IP)	True positive rate	0.4662	0.7938	0.0603	0.4050
	True negative rate	0.9976	0.9995	1.0000	0.9999
	Precision	0.9880	0.9985	1.0000	0.9997
	F1-score	0.6335	0.8844	0.1137	0.5765
Mountain Car (MC)	True positive rate	0.7220	0.7207	0.1050	0.2659
	True negative rate	0.9693	0.9872	0.9964	1.0000
	Precision	0.9621	0.9793	0.9999	1.0000
	F1-score	0.8249	0.8303	0.1900	0.4201
Cartpole (CP)	True positive rate	0.7225	0.7450	0.6554	0.7238
	True negative rate	0.9998	1.0000	1.0000	1.0000
	Precision	0.9999	1.0000	1.0000	1.0000
	F1-score	0.8389	0.8539	0.7918	0.8398

FULL PAPER

Yuang Geng, Jake Baldauf, Souradeep Dutta, Chao Huang, and Ivan Ruchkin, "Bridging Dimensions: Confident Reachability for High-Dimensional *Controllers*", in Proc. of the 26th International Symposium on Formal Methods (FM), 2024.

FUTURE WORK

- *Exhaustively* bridge HDC and LDC with satisfiability solving, without statistical bounds.
- Compute statistical bounds without sampling unlimited paired labeled trajectories.
- Develop end-to-end HDC verification toolbox.

Authors (University of Florida):

- Ivan Ruchkin, Asst. Professor
- Yuang Geng, PhD student Mentors (AFRL/RITA):
- Matthew Anderson
- Steven Drager

m
n n
n
-
-
30
30
 30 †
30 t
30
30
30 t