Towards Reliable Al-based energy system optimizers

BACKGROUND:

- The information processing of sensor-based systems is complicated by factors such as dropout due to technological sensor transmission delays, and failures, complications arising from the integration of new sensors during system expansion.
- Conventional models, with their fixed input dimensions, often fail to handle unordered, distributed, and asynchronous data collections—common issues in contested and congested environments.

METHODS:

Machine learning-assisted solutions to dynamically changing sensor networks

Our new LOOP – PE (Learning to Optimize the Optimization Process – Permutation Equivariance version) method is designed to optimize operations while handling the complexities of information processing in sensor networks.

RESULTS:

distributed Managing 20 Test system: generator agents. Assume only a random number of sensors received the corresponding agent's input parameters.

Table 1. Computational Time Comparison							
Performance Metric Gurot		Solver Time (ms)		Proposed Method Time (ms)			
Average		6.48		0.33			
Minimum	Minimum		5.02		0.30		
Maximum	24.34			0.58			
Table 2: Optimality and Feasibility Gaps of Our $\mathcal{LOOP} - \mathcal{PE}$ Method.							
Metric		Optimality		Gap	Feasibility gap		
		Average	Minimum	Maximum	Minimum		
Compared against baseline		0.04	0.00	0.13	0.00		
optimal solution							
predicted solution							
Solution Spectrum for data received from 1, 2, 3, 0, 4, 5.							
optimal solution							
predicted solution							
Solution Spectrum for Data Received from Sensors 1, 7, 2, 19, 8, 18, 16, 15, 12, 5, 6, 4, 9, 10, 13, 0, 17, 14, 3, 11.							

Permutation Equivariance Framework

The optimization problem possesses the permutation equivariance property with respect to x and u. This property allows the system to treat all sensors as interchangeable, a crucial advantage in dynamic environments where sensor roles and identities may shift.

Information from ____ sensors X

Air Force Research Laboratory | Information Directorate | Core Technical Competencies

ctivity and Dissemination (CAD) Cyber Science and Technology (CYB)

INFORMATION ® INFORMATION ® INSTITUTE

Equivariance Permutation methods enables neural optimizers with to deal information delays in sensor networks.

FA8750-20-3-1003.

Approved for Public Release, Distribution Unlimited, AFRL-2024-5527

INFORMATION INSTITUTE MISSION: Strengthen and expand information technology research, develop collaborative relationships, and increase research emphasis in areas of information technologies for the Information Directorate.

Problem Formulation

The primary objective in managing the sensorbased system is to optimize the collective behavior of all sensors while adhering to operational constraints.

 $\min f(\mathbf{u},\mathbf{x}) = \sum_{i \in \mathcal{N}_{\mathsf{A}}} f^i(\mathbf{u}^i,\mathbf{x}^i)$ $\mathbf{u} = \left[\mathbf{u}^{1},...,\mathbf{u}^{i},...,orall i \in \mathcal{N}_{\mathtt{A}}
ight], \mathbf{x} = \left[\mathbf{x}^{1},...,\mathbf{x}^{i},...,orall i \in \mathcal{N}_{\mathtt{A}}
ight]$ local constraints: $\begin{cases} \mathbf{A}_{eq}(\mathbf{x}^{i})\mathbf{u}^{i} + \mathbf{B}_{eq}(\mathbf{x}^{i}) = \mathbf{0} \\ \mathbf{A}_{ineq}(\mathbf{x}^{i})\mathbf{u}^{i} + \mathbf{B}_{ineq}(\mathbf{x}^{i}) \leq \mathbf{0} \end{cases}, \forall i \in \mathcal{N}_{A}$ coupled constraints: $\sum [\mathbf{A}(\mathbf{x}^i)\mathbf{u}^i + \mathbf{B}(\mathbf{x}^i)] \leq \mathbf{0}$

Foundation of our solution

- The Optimality Module achieves permutation equivariance because its feature embedding mechanism processes all features simultaneously, weighing them according to content rather than order. Its self-attention mechanism assesses the relationship between each sensor's features relative to others, independent of their sequence in the input.
- The Feasibility Module uses our LOOP LC 2.0 model to convert the predictions into practical, constraint-compliant actions, ensuring flexibility and robustness across different sensor setups and dynamics. The denominator term, computing the maximum across permutations, remains invariant to any permutation of input v.

$$\mathbf{u} = \mathbb{T}(\mathbf{v}) = \mathbf{u}_0(\mathbf{x}) + \frac{1}{\max_{r} \left\{ \left[\frac{\sum_{i \in \mathcal{N}_A} \mathbf{H}(\mathbf{x}^i) \mathbf{v}^i}{\sum_{i \in \mathcal{N}_A} \mathbf{h}(\mathbf{x}^i)} \right]^r \right\}} \mathbf{v}$$

Combined, for any permutation σ over the set NA, the optimizer satisfies:

 $\left[\mathbf{u}^{\sigma(1)},...,\mathbf{u}^{\sigma(i)},...,\forall i\in\mathcal{N}_{\mathtt{A}}\right] = \xi(\left[\mathbf{x}^{\sigma(1)},...,\mathbf{x}^{\sigma(i)},...,\forall i\in\mathcal{N}_{\mathtt{A}}\right])$

Javad Mohammadi, Assistant Professor, UT Austin

Collaborators : ERIKA ARDILES-CRUZ (AFRL), DAVID FERRIS (AFRL), ALEX AVED (AFRL)

